Positionierung und Intention des Athletiktrainings aus trainingswissenschaftlicher und methodischer Sicht

Dr. Sven Fikenzer BDFL, 07.05.2018

Conflict of interest

Dozententätigkeit: DFLV e.V. Deutsche Fitnesslehrer Vereinigung e.V.

(Lizenzanbieter für Trainerlizenzen)

Beratertätigkeiten: MINJUD Ministerium für Jugend und Sport

Angola

F.A.F. Angolanischer Fußballverband

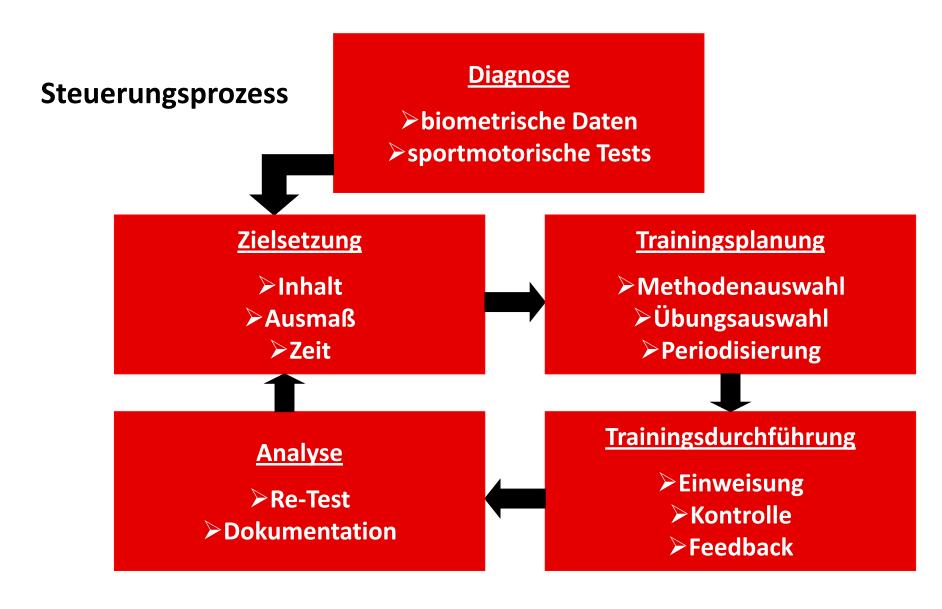
Agenda

Theoretisches

- Hintergrund und Einführung in das Athletiktraining
- Analyse der spezifischen Leistungskomponenten
- Assessment/Diagnostik im Athletiktraining

Praktisches

- Funktionelles Aufwärmen
- Schnelligkeits- und Agilitätstraining
- Krafttraining


Was versteht man unter Training?

- > Training ist ein zielorientierter Prozess
- > Training ist ein Anpassungsprozess
- > Training ist ein Steuerungsprozess
- > Training ist ein Spezialisierungsprozess

Training versus Übung:

- > Training zielt grundsätzlich auf morphologische und strukturelle Anpassungen ab!
- ➤ Übung zielt auf verbesserte Bewegungsfertigkeiten ab!

Was versteht man unter Athletik?

altgriechisch: $\tilde{\alpha}\theta\lambda$ ov ($\hat{\alpha}$ thlon) \rightarrow grc = "Wettkampf"

...Suffix: "tik" = etwas können/ beherrschen

im übertragenen Sinn:

- "für den Wettkampf vorbereitet"
- "alles für den Wettkampf Relevante beherrschen"

Was versteht man unter Athletiktraining?

Im Fokus des Athletiktrainings steht das funktionelle Training der konditionellen Fähigkeiten

- Kraft,
- Schnelligkeit und
- Ausdauer
- → Verbesserung der athletischen Fähigkeiten

Dies in Verbindung mit einer Verbesserung der grundlegenden

- Bewegungskoordination und
- Sensomotorik.

"Funktionell" bedeutet im Kontext des Athletiktrainings so viel wie "zweckorientiert" oder "zweckmäßig".

Der Begriff "Athletiktraining" taucht in der Regel in einem gleichen Kontext oder gar synonym zu dem Begriff des "funktionellen Trainings" auf (engl. "Functional Training").

Quelle Hits

Google: 9.010.000 (inkl. Babyöl, Igelball)

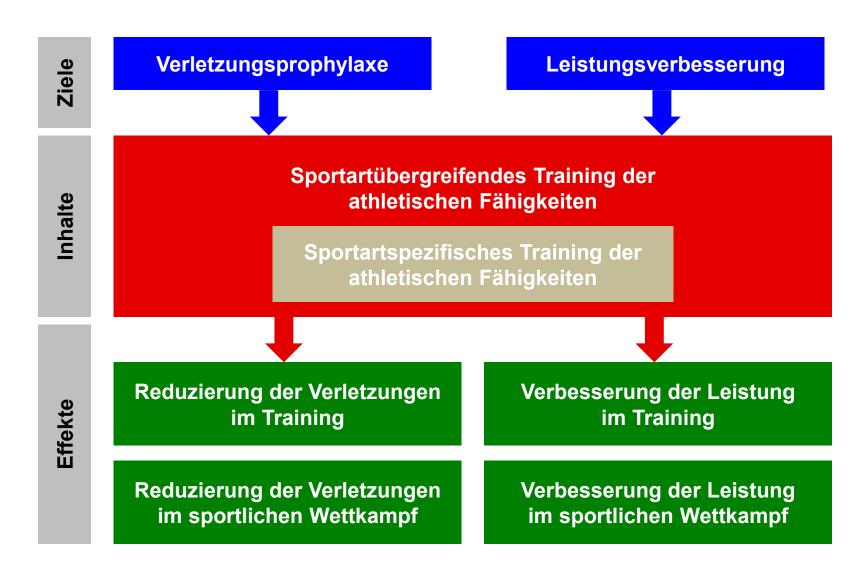
Pubmed:

-functional training	<i>52.756</i>	
-"functional training"	214	
-"functional training" and soccer	7	
-,,functional training" and football	<i>3</i>	

-,,athletic training" and soccer 61
-,,athletic training" and soccer player 4

Konsequenz: Suche nach den einzelnen Komponenten des Athletiktraining

Diskussion zur Funktionalität im Training:


- **→** Anatomisch-mechanische Sichtweise?
- **→** Zweckorientierte Sichtweise?

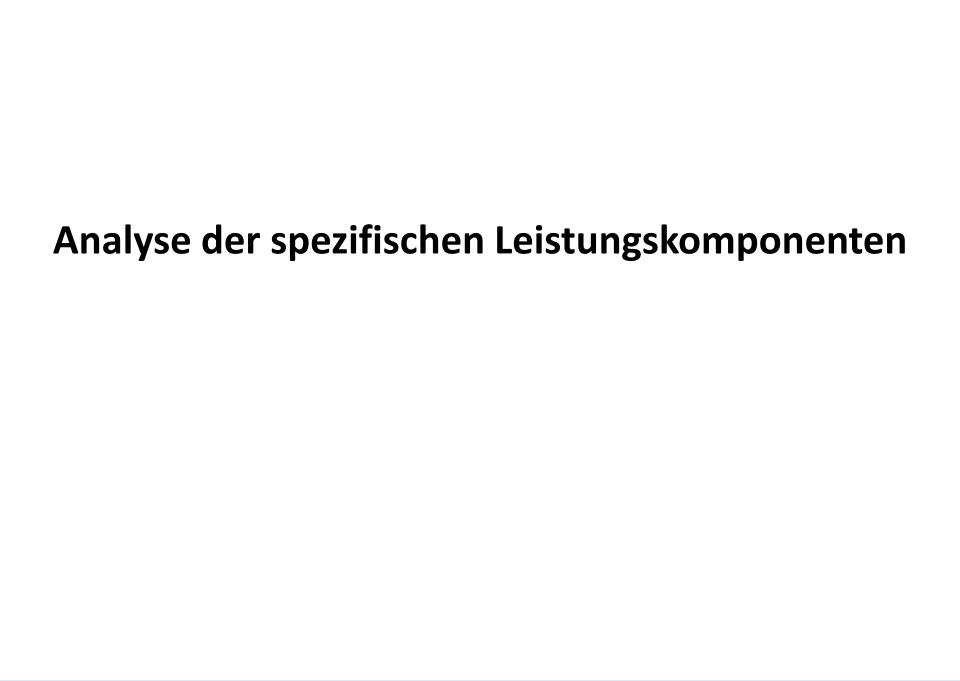
Fazit:

→ Athletiktraining ist grundsätzlich zweckorientiert!

Schlussfolgerungen:

- → Athletiktraining zielt nicht auf das Stimulieren einzelner Muskeln, sondern auf das Trainieren komplexer Bewegungsabläufe ab!
- → Athletiktraining verfolgt keine ästhetischen Ziele, sondern zielt auf eine Verbesserung der Leistungsfähigkeit ab!

Inhalte des Athletiktrainings I:


- → Funktionelles Aufwärmen:
 - > Erhöhung der physiologischen Leistungsbereitschaft
 - > Bewegungsvorbereitung ("Movement Preparation")
 - > Kompensation von Bewegungsdefiziten
- → Schnelligkeits- und Agilitätstraining:
 - > Training der linearen Schnelligkeit
 - > Training der lateralen Schnelligkeit

Inhalte des Athletiktrainings II:

- → Funktionelles Krafttraining:
 - ➤ Verbesserung der Kraftqualitäten bei komplexen Bewegungshandlungen
 - ➤ Verbesserung der Kraftausdauer, Maximalkraft, Schnellkraft, Reaktivkraft
 - Kompensation von hohen mechanischen Belastungen
- **→** Funktionelles Ausdauertraining:
 - > Verbesserung der Laktattoleranz
 - > Training der spezifischen lokalen Muskelausdauer

Bedeutung der Rumpfmuskulatur im Athletiktraining:

- → Komplexe Kraftleistungen entstehen im Kontext des Athletiktrainings nicht isoliert in ausgewählten Muskeln
- → Komplexe Kraftleistungen im Kontext des Athletiktrainings sind das Resultat mehrdimensionaler Muskelaktionen
- → Rumpfmuskulatur ist Bindeglied zwischen Muskulatur des Schultergürtels sowie der oberen Extremitäten und der Muskulatur der unteren Extremitäten
- → Rumpf = Kraftzentrum ("Core")

Grundlegende Leistungsdeterminanten:

- **→** Beherrschung funktioneller Bewegungsmuster:
 - > Bewegungskoordination
 - > Sensomotorik
- → Ausprägung der spezifischen konditionellen Fähigkeiten:
 - ➤ Schnelligkeit, Kraft, Ausdauer
- → Ausprägung der spezifischen Fertigkeiten:
 - > Sportartspezifische Fertigkeiten (Sportarttechniken)

Hintergrund:

- → SAID-Prinzip: "Specific Adaption to Imposed Demand"
- → Spezifische Anpassungen resultieren aus einem spezifischen Training

Grundlegende Aspekte bei der Leistungsanalyse:

- → Analyse der motorischen bzw. muskulären Komponenten:
 - > Welche Bewegungsmuster werden absolviert?
- → Analyse der konditionellen bzw. metabolischen Komponenten:
 - > Welche konditionellen Fähigkeiten dominieren?
 - > Welche Stoffwechselkomponente dominiert?

- → Analyse im Hinblick auf die sportarttypischen Bewegungsmuster bzw- Bewegungshandlungen:
 - ➤ Laufbewegungen linear und/oder lateral?
 - > Sprungbewegungen vertikal und/oder horizontal?
 - ➤ Wurf-, Stoß-, Schlag-, Zug-, Druckbewegungen?
 - > Bewegungsamplituden dieser Bewegungsmuster?
 - > Bewegungstempi dieser Bewegungsmuster?
 - ➤ Bedeutung der Störgröße Gegner?

- → Analyse im Hinblick auf die dominierenden konditionellen und metabolischen Leistungskomponenten:
 - **➤** Schnelligkeit?
 - ➤ Kraft?
 - > Ausdauer?
- → Analyse im Hinblick auf zusätzliche koordinative Anforderungen:
 - ➤ Anforderungen an die Sensomotorik?
 - > Anforderungen an die Propriozeption?

- → Spezifische Analyse der Schnelligkeit als Einflussgröße:
 - > Primär lineare oder laterale Schnelligkeit?
 - > Anforderungen an die Reaktionsfähigkeit?
- → Spezifische Analyse der Kraft als Einflussgröße:
 - > Welche Erscheinungsform der Kraft ist dominant?
 - ➤ Welche Kraftimpulse wirken?
 - Welche zeitliche Struktur der Kraftimpulse liegt vor?
 - ➤ Welche Bewegungsmuster müssen bei Kraftleistungen absolviert werden?

- → Spezifische Analyse der Ausdauer als Einflussgröße:
 - > Welche Form bzw. Art der Ausdauer ist dominant?
 - > Welche zeitliche Struktur der Ausdauerleistung liegt vor?
 - > Bedeutung der Grundlagenausdauer?
 - Bedeutung der Laktattoleranz?
 - Welche Arbeitsmuskulatur wird gefordert?
- → Ableitung von Trainingsempfehlungen basierend auf der Leistungsanalyse sowie auf den individuellen Leistungsvoraussetzungen des Sportlers

Ansatzpunkte für ein Assessment im Athletiktraining:

- → Testung funktioneller Bewegungsmuster:
 - ➤ Functional Movement ScreenTM
- → Testung der funktionellen Leistung:
 - > Schnelligkeitstests
 - > Krafttests
 - > Ausdauertests

Ansatzpunkte für ein Assessment im Athletiktraining:

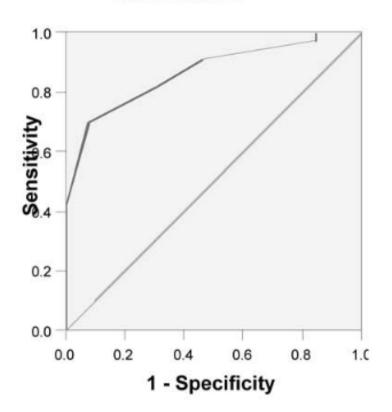
- → Testung funktioneller Bewegungsmuster:
 - ➤ Functional Movement ScreenTM
- → Testung der funktionellen Leistung:
 - > Schnelligkeitstests
 - > Krafttests
 - **Ausdauertests**

Functional Movement Screen[™] (FMS):

- → Analyse von Bewegungsmustern bzw. Bewegungshandlungen anhand objektiver Kriterien
- → Aufdeckung von Bewegungsdefiziten bzw. Schwachstellen bei der Bewegungsqualität
- → Ableitung potenzieller Verletzungsrisiken resultierend aus den Bewegungsdefiziten
- → Ableitung von Verbesserungspotenzialen zum Zwecke der Leistungssteigerung

Testübungen Functional Movement Screen™ (FMS):

- **→** Tiefkniebeuge
- **→** Hürdenschritt
- → Linearer Ausfallschritt
- **→** Schulterbeweglichkeit
- → Aktives Beinanheben aus der Rückenlage
- → Rumpfstabilität im Liegestütz
- → Rotationsstabilität im Vierfüßlerstand


Bewertungskriterien Functional Movement Screen™ (FMS):

Punkte	Bewertungskriterien
3	Perfekte Bewegungsausführung
2	Ausführung mit Kompensationsbewegungen und Ausführungsdefiziten
1	Unfähigkeit, komplette Bewegungsmuster auszuführen (Steifigkeit, Verlust des Gleichgewichts oder andere Schwierigkeiten)
0	Auftreten von Schmerzen im Verlauf der Bewegung (unabhängig von der eventuellen Perfektion der Bewegung)

CAN SERIOUS INJURY IN PROFESSIONAL FOOTBALL BE PREDICTED BY A PRESEASON FUNCTIONAL MOVEMENT SCREEN?

Kyle Kiesel, PT, PhD, ATC, CSCS^a

ROC Curve

N Am J Sports Phys Ther. 2007;2:147-158.

Coordinates of the ROC Curve

Test Result Variable(s): FMS

Test Nesalt variab		
FMS	Sensitivity	1 - Specificity
10.0000	1.000	1.000
12.0000	1.000	.846
13.5000	.970	.846
14.5000	.909	.462
15.5000	.818	.308
16.5000	.697	.077
17.5000	.424	.000
18.5000	.242	.000
20.0000	.000	.000

Coordinates of the ROC curve showing that the FMS composite score value which corresponds best with the upper left hand portion of the curve is between 13.5 and 14.5 justifying the cut-point determination of 14.

Reliability, Validity, and Injury Predictive CME Value of the Functional Movement Screen

A Systematic Review and Meta-analysis

Nicholas A. Bonazza,* MD, Dallas Smuin,† BS, Cayce A. Onks,† DO, MS, ATC, Matthew L. Silvis,† MD, and Aman Dhawan,*§ MD

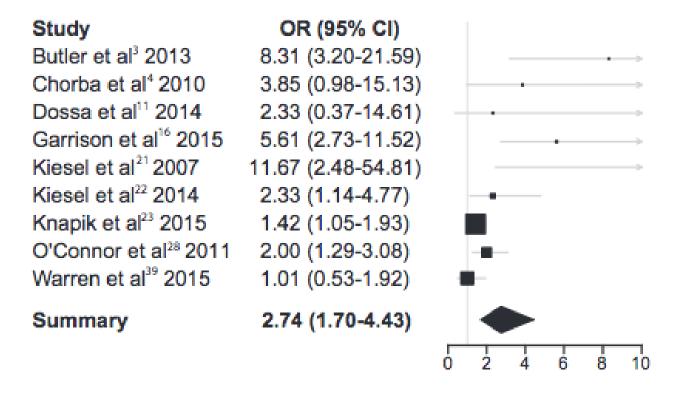
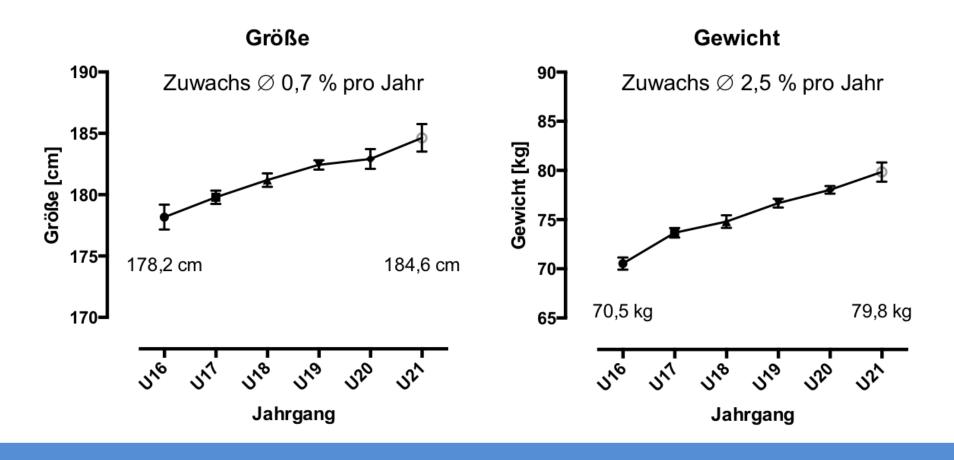
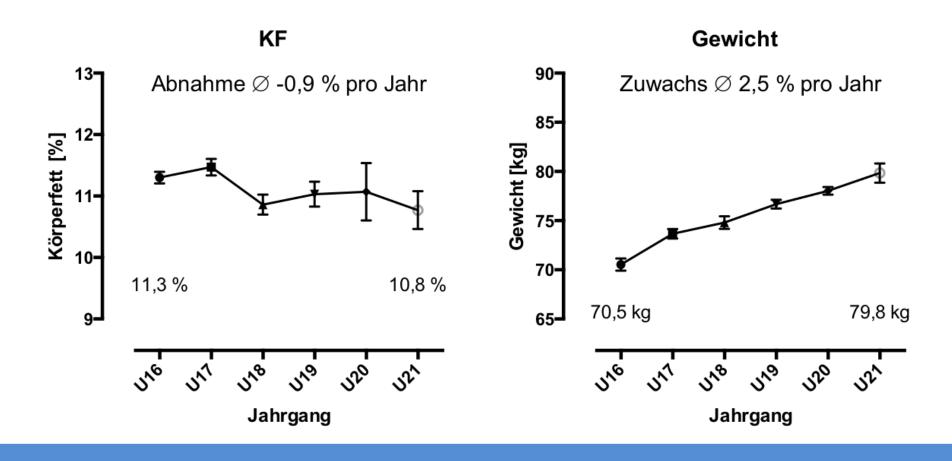


Figure 6. Analysis of injury predictive value. OR, odds ratio.

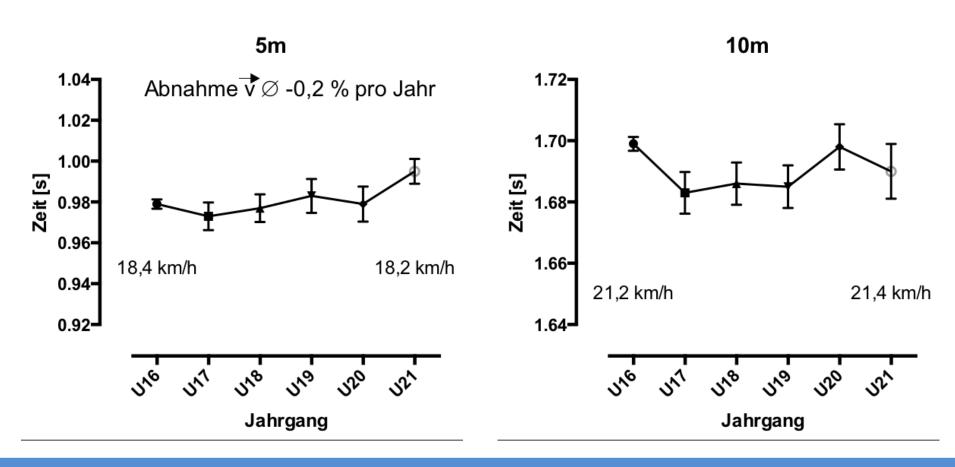
Am J Sports Med. 2017 Mar;45(3):725-732. doi: 10.1177/0363546516641937


Ansatzpunkte für ein Assessment im Athletiktraining:

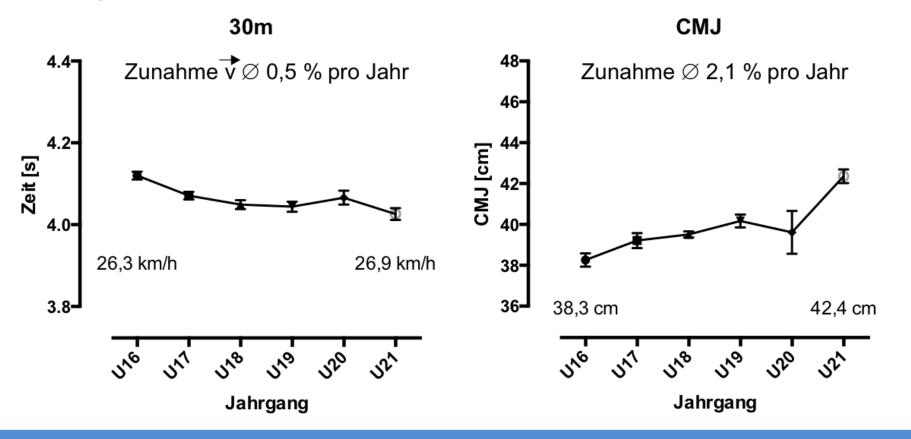
- → Testung funktioneller Bewegungsmuster:
 - > Functional Movement ScreenTM
- → Testung der funktionellen Leistung:
 - > Schnelligkeitstests
 - > Krafttests
 - > Ausdauertests


Antrhopometrie,

International Journal of Sports Physiology and Performance, 2016, 11, 370-376 http://dx.doi.org/10.1123/ijspp.2015-0071 © 2016 Human Kinetics, Inc.

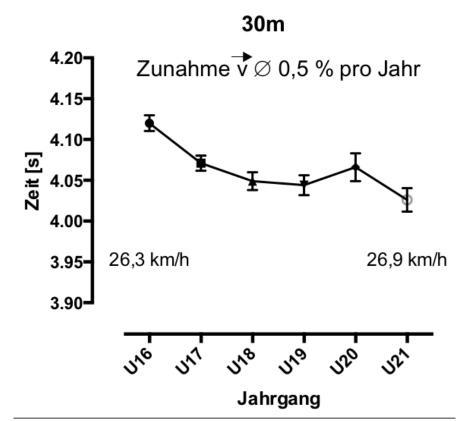

Gewicht und Köperfett

International Journal of Sports Physiology and Performance, 2016, 11, 370-376 http://dx.doi.org/10.1123/ijspp.2015-0071 © 2016 Human Kinetics, Inc.



Schnelligkeitstests

International Journal of Sports Physiology and Performance, 2016, 11, 370-376 http://dx.doi.org/10.1123/ijspp.2015-0071 © 2016 Human Kinetics, Inc.


Schnelligkeitstests (30m) Sprungkraft (CMJ) International Journal of Sports Physiology and Performance, 2016, 11, 370-376 http://dx.doi.org/10.1123/ijspp.2015-0071 © 2016 Human Kinetics, Inc.

Schnelligkeitstests (30m),

International Journal of Sports Physiology and Performance, 2016, 11, 370-376 http://dx.doi.org/10.1123/ijspp.2015-0071 © 2016 Human Kinetics, Inc.

Ergebnisse DFB-Auswahlmannschaften

	Männer		
Test	durch- schnittl.	gut	Elite
30-m-Sprint	3,9-4,1	3,6-3,9	3,3-3,6
30-m-Sprint (fliegender Start)	3,5-3,7	3,2-3,5	2,8-3,2

Filed, R. W. (1991). Explosiv power test scores among male and female college athletes.

National Strength and Conditioning

Association Journal, 13 (3), 50.

Funktionelles Aufwärmen

Funktionelles Aufwärmen

Inhalte des funktionellen Aufwärmens:

- **→** Bewegungsvorbereitung ("Movement Preparation"):
 - > Erhöhung der Körperkerntemperatur
 - ➤ Verbesserung der neuromuskulären Ansteuerung bei komplexen Bewegungen
 - ➤ Vorbereitung der Muskel-Gelenk-Systeme auf schnelle Bewegungshandlungen und laterale Bewegungen
 - > Verbesserung der Beweglichkeit durch Mobilisation
 - > Beseitigung von Bewegungsdefiziten

Funktionelles Aufwärmen

Inhalte des funktionellen Aufwärmens:

Bei den Übungen zur Bewegungsvorbereitung werden die involvierten Muskel-Gelenk-Systeme über eine große R.O.M. mobilisiert.

Grundsätzlich werden bei linearen Bewegungen primär Hüftgelenkextensoren und -flexoren sowie Kniegelenkextensoren und -flexoren mobilisiert.

Bei lateralen Bewegungen werden stärker die Hüftgelenkabduktoren und -adduktoren mobilisiert.

Vor allem weite Ausfallschrittbewegungen (linear und lateral) mit gleichzeitiger Rumpfrotation bereiten auf komplexe Bewegungshandlung im Hauptteil des Trainings bzw. Wettkampf vor.

Funktionelles Aufwärmen

Inhalte des funktionellen Aufwärmens:

Plyometrische Übungen (Sprung und Landeformen)

Agilitätsübungen (Skipping-Drills)

Komplettprogramm FIFA 11+

Herman et al. BMC Medicine 2012, 10:75 http://www.biomedcentral.com/1741-7015/10/75

RESEARCH ARTICLE

Open Access

The effectiveness of neuromuscular warm-up strategies, that require no additional equipment, for preventing lower limb injuries during sports participation: a systematic review

Katherine Herman, Christian Barton, Peter Malliaras and Dylan Morrissey*

The effectiveness of neuromuscular warm-up strategies, that require no additional equipment, for preventing lower limb injuries during sports participation: a systematic review

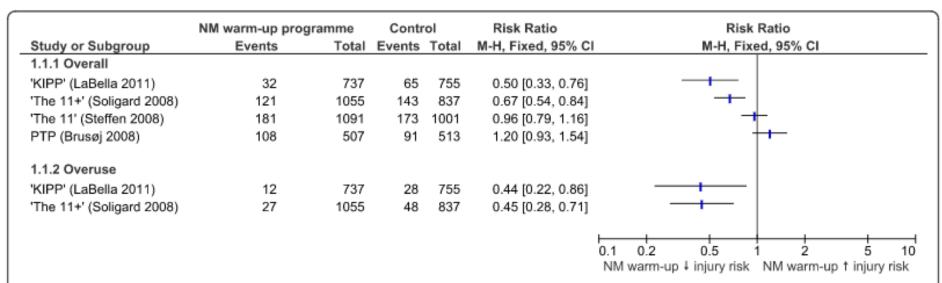


Figure 2 Forest plot graph demonstrating risk ratios for the effectiveness of neuromuscular warm-up strategies in preventing undefined lower limb injuries.

The effectiveness of neuromuscular warm-up strategies, that require no additional equipment, for preventing lower limb injuries during sports participation: a systematic review

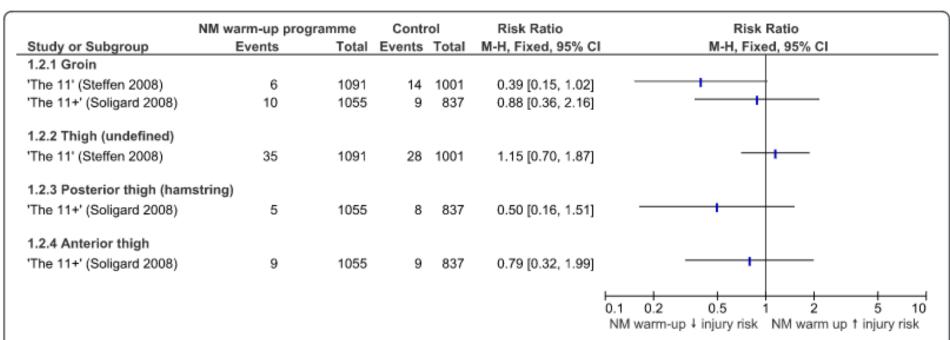


Figure 3 Forest plot graph demonstrating risk ratios for the effectiveness of neuromuscular warm-up strategies in preventing hip and thigh injuries.

Th recinj

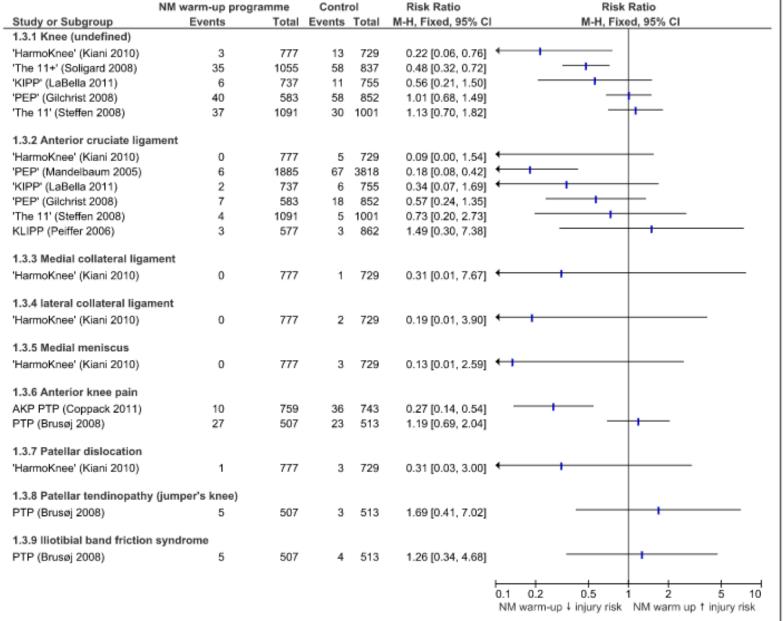


Figure 4 Forest plot graph demonstrating risk ratios for the effectiveness of neuromuscular warm-up strategies in preventing knee injuries.

Herman et al. BMC Medicine 2012, 10:75

nat

nb

The effectiveness of neuromuscular warm-up strategies, that require no additional equipment, for preventing lower limb injuries during sports participation: a systematic review

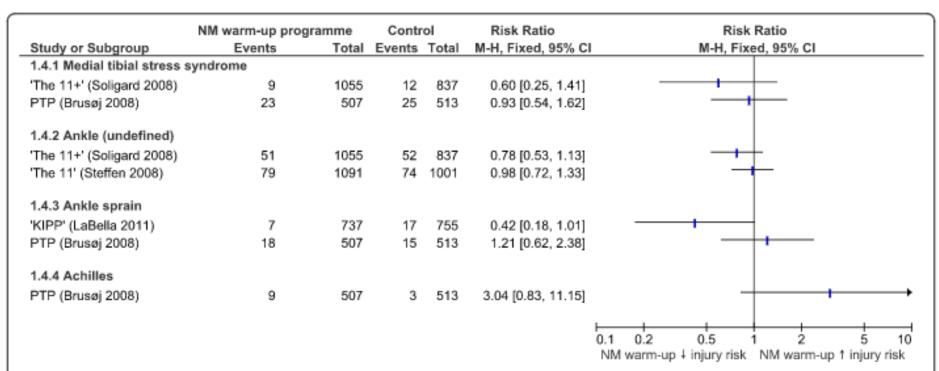
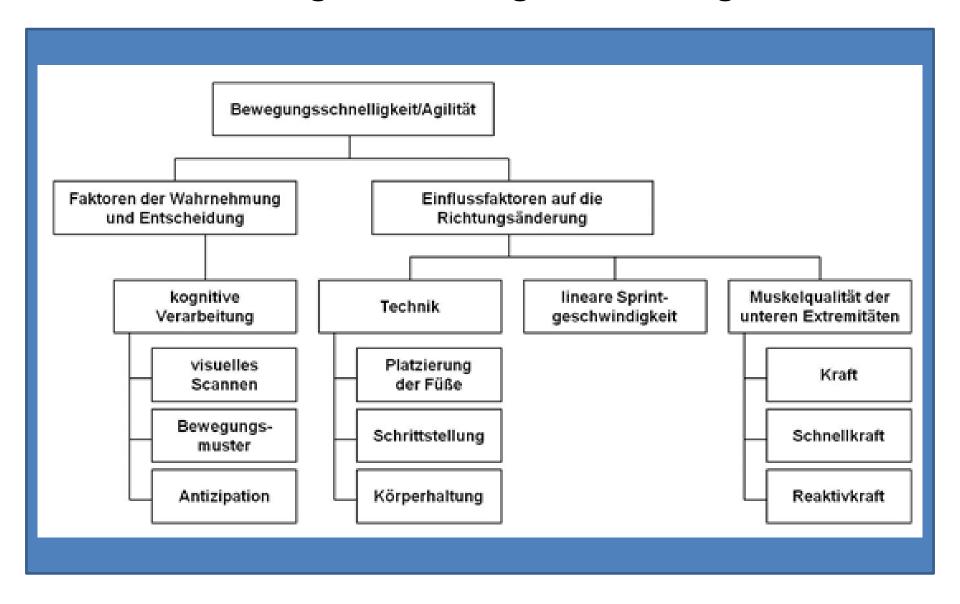


Figure 5 Forest plot graph demonstrating risk ratios for the effectiveness of neuromuscular warm-up strategies in preventing lower leg and knee injuries.

Kategorien der Schnelligkeit:

- → Fähigkeit, sich möglichst schnell fortzubewegen (Beschleunigungsfähigkeit, Fähigkeit zur möglichst hohen Bewegungsgeschwindigkeit)
 - Lineare Schnelligkeit (lokomotorische Schnelligkeit)
- → Fähigkeit, schnell ausgeführte Bewegungshandlungen an sich verändernde Umweltbedingungen schnell anpassen zu können (z.B. schnelle Richtungswechsel)
 - ➤ Laterale Schnelligkeit (Agilität)

Einflussfaktoren auf die lineare Schnelligkeit:


- → Antrittsschnelligkeit
- → Beschleunigungsfähigkeit
- → Fähigkeit, eine möglichst hohe Endgeschwindigkeit zu erzielen und diese möglichst lange aufrecht zu erhalten

Einflussfaktoren auf die laterale Schnelligkeit:

- → Reizwahrnehmung und -verarbeitung:
 - > Reaktionsschnelligkeit
- **→** Lauftechnik:
 - > Platzierung der Füße
 - > Schrittstellung
 - > Oberkörperhaltung
- **→** Lineare Sprintgeschwindigkeit
- → Schnellkraft / Reaktivkraft der unteren Extremitäten

Einflussfaktoren auf die laterale Schnelligkeit:

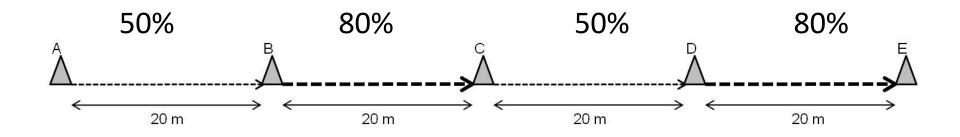
- → Reizwahrnehmung und -verarbeitung:
 - > Reaktionsschnelligkeit
- **→** Lauftechnik:
 - > Platzierung der Füße
 - > Schrittstellung
 - > Oberkörperhaltung
- **→** Lineare Sprintgeschwindigkeit
- → Schnellkraft / Reaktivkraft der unteren Extremitäten

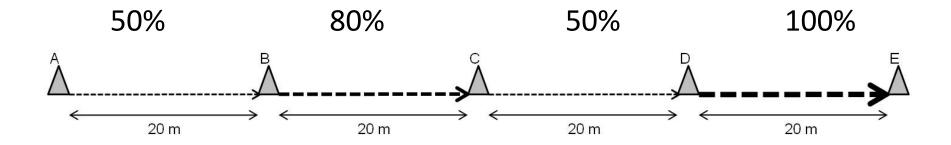
Training der Antrittsschnelligkeit

Fallender Sprintstart

Fallender Sprintstart mit 90° Oberkörpervorneigung

Training der Antrittsschnelligkeit


Ballwurf-Sprintstart


4-5 m Abstand vom Sportler

Sprintstart gegen Widerstand des Partners

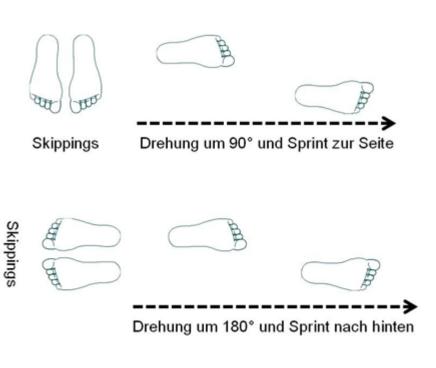
Alternativen: elastisches Band Gewichtsschlitten

Training der Beschleunigung

Training der Antrittsschnelligkeit und max. Laufgeschwindigkeit

Belastungsgestaltung

Belastungskomponenten für ein Training der Antrittsschnelligkeit

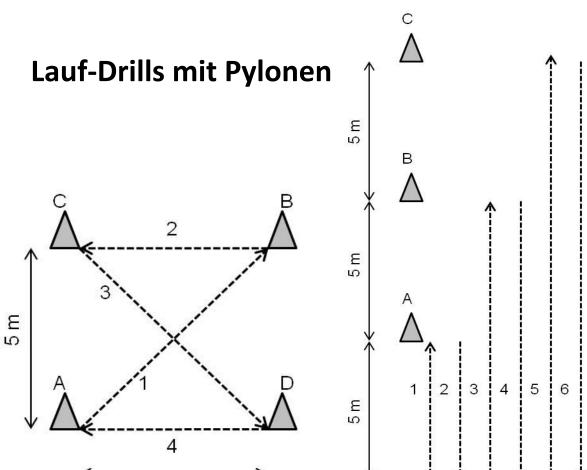

Belastungsintensität:	V _{max}
Belastungsdauer:	2-3 Sek. (ca. 8-10 m Laufstrecke)
Belastungsumfang:	5-6 Wdh.
Belastungsdichte:	bis zu 3 Min. Pause zwischen den Wdh.

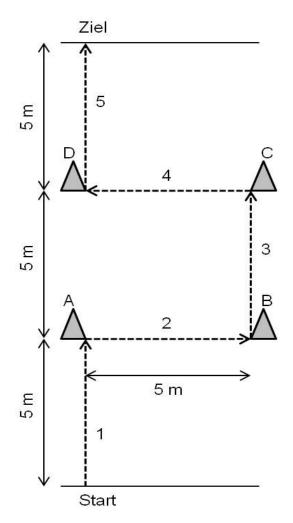

Belastungskomponenten für ein Training der V_{max} und Beschleunigung

Belastungsintensität:	50-100 % V _{max}
Belastungsdauer:	15-20 Sek. (ca. 80-100 m Laufstrecke)
Belastungsumfang:	3-6 Wdh.
Belastungsdichte	≥5 Min. Pause zwischen den Wdh.

Agilitätstraining

Skipping-Drills

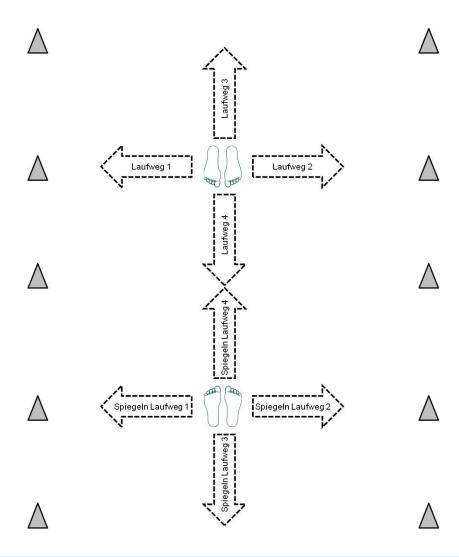




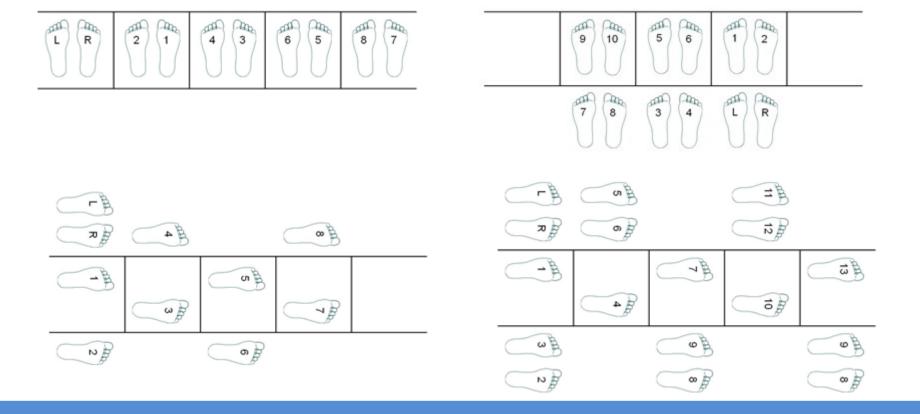
Start

Agilitätstraining

5 m



Agilitätstraining


Lauf-Drills mit Partner

Spiegeln des Partners in vier Bewegungsrichtungen

Agilitätstraining

Agilitätsleiter

Agilitätstraining

Belastungsgestaltung

Belastungskomponenten für ein Agilitätstraining mit Skipping-Drills

Belastungsintensität:	V _{mex}
Belastungsdauer:	je nach Drillform ca. 30-45 Sek. pro Durchlauf
Belastungsumfang:	4-6 Wdh./Durchläufe
Belastungsdichte:	1-2 Min. Pause zwischen den Wdh.

Belastungskomponenten für ein Agilitätstraining mit Pylonen-Drills

Belastungsintensität:	V _{max}
Belastungsdauer.	je nach Drillform ca. 15-20 Sek. pro Durchlauf
Belastungsumfang:	4-6 Wdh./Durchläufe
Belastungsdichte:	1-2 Min. Pause zwischen den Wdh.

Agilitätstraining

Belastungsgestaltung

Belastungskomponenten für ein Agilitätstraining mit Agilitätsleiter

Belastungsintensität:	V _{max}
Belastungsdauer:	je nach Drillform ca. 5-10 Sek. pro Durchlauf
Belastungsumfang:	6-8 Wdh.
Belastungsdichte:	30-60 Sek. Pause zwischen den Wdh.

-

Krafttraining

Krafttraining

Plyometrisches Training

Bei den plyometrischen Übungen geht es um eine Verbesserung der Reaktivkraft, d. h. derjenigen Kraftleistung, welche aus einem Dehnungs-Verkürzungs-Zyklus der Arbeitsmuskulatur resultiert.

Plyometrisches Training

Biol. Sport 2017;34:137-148

TABLE 2. Periodization of plyometric (PLYO) training (session 2 of every week).

Exercises	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
СМЈ	2 x 8	2 x 10	2 x 12			
Line jump (standing distance jump)	2 x 8	2 x 10	2 x 10			
Drop jump + 1 step	2 x 8	2 x 8	2 x 10			
Front to back cone hops	2 x 8	2 x 10	2 x 12			

Biol. Sport 2017;34:137-148

TABLE 2. Periodization of plyometric (PLYO) training (session 2 of every week).

Exercises		Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
Lateral box jump push off		2 x 8	2 x 8	2 x 10	3 x 8	3 x 8	2 x10
One leg distance jump + 1 step	生态等				3 x 8/leg	3 x 8/leg	2 x10 /leg
Single-leg cone jumps front to back					3 x 8/leg	3 x 10/leg	2 x10 /leg
Single-leg cone jumps side to side					3 x 8/leg	3 x 10/leg	2 x10 /leg
Single-leg box Push off					3 x 8/leg	3 x 8/leg	2 x10 /leg

Krafttraining

Plyometrisches Training

Belastungskomponenten für ein plyometrisches Training mit dem eigenen Körpergewicht

Belastungsintensität (in % der maximalen Sprungleistung bzw. Sprungintensität)	100 %
Wiederholungen	10-12 Wdh.
Pause zwischen den Wdh.	4-6 Sek.
Serien	3-5
Serienpausen	≥5 Min.

42 Elite Jugendspieler

Alter: 13.6 ± 0.3 Jahre

Plyo

Agil

R-Spr

Kontr

TABLE 3. Periodization of AG training (session 2 of every week).

Wee	eks	Skipping 10m	AG 5-0-5m	Half-T-test 20m	Shuttle 4 x 10m	Total distance (m)	Session AG Number
1	S x R r (min)	2 x 2 1	2 x 2 1	2 x 2 1	2 x 2 2	360	48
2	S x R r (min)	2 x 3 1		2 x 3 1	2 x 3 2	420	66
3	S x R r (min)		2 x 3 2	2 x 3 1	2 x 3 2	480	72
4	S x R r (min)	2 x 3 1	2 x 3 1	2 x 3 1	2 x 3 2	540	72
5	S x R r (min)	2 x 4 1		2 x 4 1	2 x 4 2	560	88
6	S x R r (min)	2 x 2 1	2 x 2 1	2 x 4 2	2 x 3 2	520	78

S = Series; R = Repetition; r = recovery time; AG = Agility.

TABLE 4. Periodization of repeated sprint training (session 2 of every week).

	Cata	Formal and	Recovery	1-1	
	Sets	Exercices	Exercices	Sets	Intensity
Week 1	3	5 x 20 m	20 s	4 min	100%
Week 2	3	6 x 20 m	20 s	4 min	100%
Week 3	4	5 x 20 m	20 s	4 min	100%
Week 4	3	5 x 30 m	20 s	4 min	100%
Week 5	3	6 x 30 m	20 s	4 min	100%
Week 6	2	6 x 30 m	20 s	4 min	100%

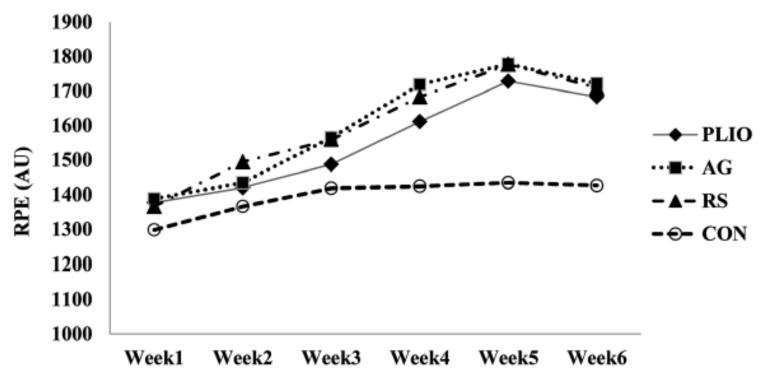
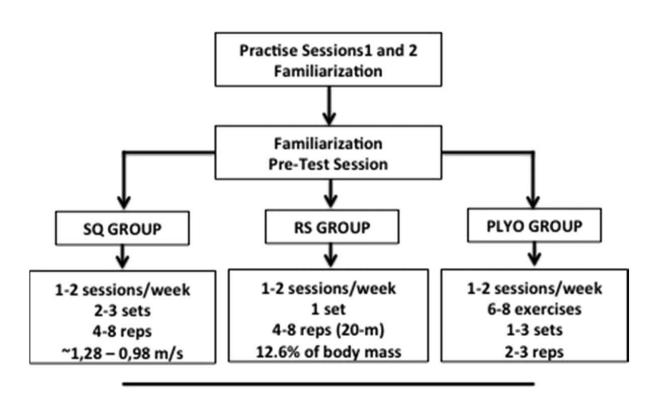


FIG. 2. Weekly session-RPEs of different training programmes.


Table 5. Effect of 6 weeks of training on physical performance (mean \pm SD). PLYO = Plyometric, AG = Agility, RSA= Repeated sprint, and CON = Control group, BSHJ = Bilateral standing horizontal jump.

			Dro toot	Post-test	Change	Cohen's d -	Effect c	ondition
			Pre-test	Post-test	(%)	conen's a	p-value	ES (η²)
		PLYO	1.92±0.06	1.87±0.07** ^d	2.50	Large	0.000	Large
	0-10m (s)	AG	1.91±0.03	1.87±0.03** ^d	1.99	Large		
	0-10m (s)	RS	1.90±0.07	1.82±0.06**a.b.d	4.20	Large		
		CON	1.90±0.06	1.89±0.06*	0.89	Small		
	10- 30m (s)	PLYO	2.76±0.08	2.74±0.08*	0.83	Small	0.83	Small
rint		AG	2.76±0.11	2.73±0.09*	0.94	Small		
Spi		RS	2.78±0.09	2.75±0.07*	1.23	Small		
		CON	2.76±0.08	2.75±0.09	0.54	Small		
		PLYO	4.68±0.10	4.61±0.10** ^d	1.52	Moderate	0.000	Large
	0-30m (s)	AG	4.67±0.10	4.61±0.08** ^d	1.37	Moderate		
		RS	4.68±0.09	4.57±0.07**a.b.d	2.44	Large		
		CON	4.67±0.07	4.64±0.08*	0.69	Small		

		Dra tast	Post-test Change	Cohen's d -	Effect condition		
		Pre-test	Post-test	(%)	Conen s a -	p-value	ES (η²)
BSHJ (m)	PLYO	1.73±0.08	1.85±0.07**b.o.d	6.70	Large	0.000	Large
	AG	1.69±0.14	1.75±0.14** ^d	3.80	Small		
	RS	1.70±0.09	1.76±0.09** ^d	3.48	Moderate		
	CON	1.69±0.08	1.72±0.08**	1.60	Small		
5-Jump (m)	PLYO	9.26±0.39	10.17±0.46**b.o.d	9.82	Large	0.001	Large
	AG	9.23±0.97	9.89±0.87** ^d	7.08	Moderate		
	RS	9.28±0.65	9.79±0.59** ^d	5.52	Moderate		
	CON	9.29±0.72	9.56±0.74*	2.93	Small		
	PLYO	7.10±0.23	6.95±0.17** ^d	2.04	Moderate	0.000	Large
7ianaa (10m /a)	AG	7.14±0.18	6.86±0.17***a.d	4.02	Large		
Zigzag 20m (s)	RS	7.15±0.20	6.88±0.14***d	3.84	Large		
	CON	7.12±0.22	7.07±0.21	0.78	Small		
	PLYO	6.30±0.26	6.26±0.26** ^d	0.73	Small	0.003	Large
RSA _{best} (s)	AG	6.31±0.26	6.26±0.27*d	0.87	Small		
	RS	6.31±0.18	6.20±0.15***a.b.d	1.69	Moderate		
	CON	6.30±0.21	6.30±0.18	0.06	Small		

Comparative Effects of In-Season Full-Back Squat, Resisted Sprint Training, and Plyometric Training on Explosive Performance in U-19 Elite Soccer Players

Moises de Hoyo, 1,2 Oliver Gonzalo-Skok, 3 Borja Sañudo, 2 Claudio Carrascal, 1 Jose R. Plaza-Armas, 4 Fernando Camacho-Candil, 5 and Carlos Otero-Esquina 1

Post-Test Session

8 Wochen lang zusätzlich zum normalen Training

Comparative Effects of In-Season Full-Back Squat, Resisted Sprint Training, and Plyometric Training on Explosive Performance in U-19 Elite Soccer Players

TABLE 4. Changes in performance after squat (SQ, n = 11), resisted sprint (RS, n = 13), or plyometric and specific drills (PLYO, n = 9) training

	Variables	Pretest	Posttest	Changes (%) (90% CL)	Standardized differences (ES ± 90% CL)	Qualitative assessment
SQ (n = 11)	CMJ (cm)	37.5 ± 4.2	40.0 ± 5.5	6.3 (3.5; 9.2)	0.51 (0.29; 0.73)	Very likely
	0-10 m (s)	1.67 ± 0.05	1.68 ± 0.08	-1.0 (-3.6; 1.5)	-0.31 (-1.10; 0.48)	Unclear
	10-20 m (s)	1.27 ± 0.04	1.25 ± 0.04	1.9 (0.8; 2.9)	0.61 (0.26; 0.96)	Very likely
	0-20 m (s)	2.95 ± 0.09	2.94 ± 0.10	0.2 (-1.4; 1.7)	0.05 (-0.43; 0.54)	Unclear
	0-30 m (s)	4.11 ± 0.12	4.07 ± 0.11	1.0 (-0.2; 2.2)	0.32 (-0.06; 0.70)	Possibly
	30-50 m (s)	2.37 ± 0.09	2.29 ± 0.09	3.4 (1.9; 4.8)	0.84 (0.48; 1.21)	Almost certainly
	0-50 m (s)	6.50 ± 0.20	6.38 ± 0.19	2.0 (0.8; 3.1)	0.60 (0.23; 0.97)	Very likely
	COD (s)	4.99 ± 0.10	4.97 ± 0.14	0.3 (-1.5; 2.2)	0.15 (-0.67; 0.97)	Unclear
RS (n = 13)	CMJ (cm)	35.3 ± 2.7	37.0 ± 2.8	4.8 (3.4; 6.3)	0.57 (0.40; 0.74)	Almost certainly
	0-10 m (s)	1.72 ± 0.05	1.71 ± 0.06	0.4 (-0.5; 1.3)	0.11 (-0.16; 0.37)	Possibly
	10-20 m (s)	1.28 ± 0.04	1.27 ± 0.04	0.2 (-1.3; 1.7)	0.06 (-0.39; 0.51)	Unclear
	0-20 m (s)	3.00 ± 0.07	2.99 ± 0.08	0.1 (-0.7; 1.0)	0.05 (-0.25; 0.34)	Unclear
	0-30 m (s)	4.22 ± 0.12	4.19 ± 0.13	0.7 (-0.3; 1.7)	0.21 (-0.11; 0.53)	Possibly
	30-50 m (s)	2.37 ± 0.10	2.33 ± 0.08	1.7 (0.4; 3.1)	0.45 (0.09; 0.81)	Likely '
	0-50 m (s)	6.60 ± 0.22	6.53 ± 0.20	1.0 (0.0; 2.0)	0.30 (-0.01; 0.60)	Possibly
	COD (s)	5.26 ± 0.16	5.28 ± 0.17	-0.3 (-1.8; 1.1)	-0.10 (-0.54; 0.35)	Unclear
PLYO(n=9)	CMJ (cm)	35.5 ± 4.3	37.9 ± 3.6	7.2 (2.6; 12.1)	0.50 (0.18; 0.81)	Likely
	0-10 m (s)	1.72 ± 0.07	1.72 ± 0.08	0.1 (-2.4; 2.5)	0.02 (-0.55; 0.60)	Unclear
	10-20 m (s)	1.26 ± 0.04	1.25 ± 0.05	0.4 (-1.2; 1.9)	0.12 (-0.36; 0.60)	Unclear
	0-20 m (s)	2.99 ± 0.08	2.98 ± 0.12	0.3 (-1.5; 2.1)	0.12 (-0.51; 0.74)	Unclear
	0-30 m (s)	4.17 ± 0.11	4.13 ± 0.17	1.0 (-0.6; 2.6)	0.35 (-0.21; 0.90)	Possibly
	30-50 m (s)	2.36 ± 0.09	2.32 ± 0.10	2.0 (0.8; 3.2)	0.50 (0.19; 0.81)	Likely
	0-50 m (s)	6.55 ± 0.20	6.46 ± 0.25	1.5 (0.2; 2.8)	0.46 (0.05; 0.88)	Likely
	COD (s)	4.94 ± 0.18	4.94 ± 0.19	0.1 (-1.1; 1.3)	0.02 (-0.27; 0.32)	Unclear

^{*}Data are mean ± SD.

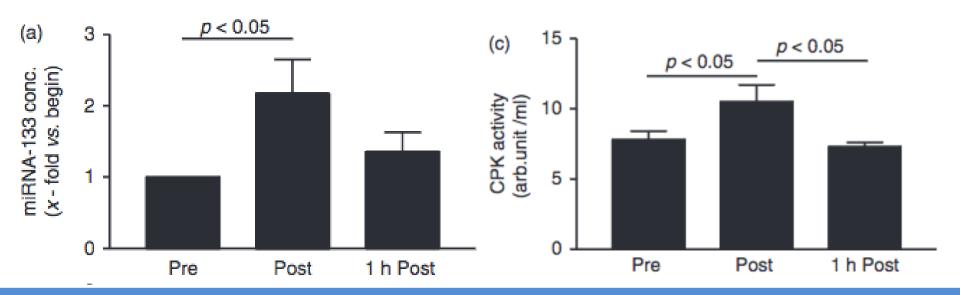
tFor clarity, all differences are presented as improvements (positive), so that negative and positive differences are in the same direction.

[†]CL = confidence limits; ES = effect size; CMJ = countermovement jump height; COD = change of direction time; %Difference = percentage difference; Change of having better/similar/poorer values.

Mögliche Wirkung plyometrischen Krafttrainings

Plyometrisches Training:

- Reaktivkraft, d. h. derjenigen Kraftleistung, welche aus einem Dehnungs-Verkürzungs-Zyklus der Arbeitsmuskulatur resultiert.
- → Dies beinhaltet eine exzentrische Belastungskomponente.
- → Strukturelle Belastungen der Muskelfasern
 - → Mikrotraumen
 - → Zellzerstörungen
 - → Plasmakonzentrationsanstieg von CK
 - → Plasmakonzentrationsanstieg anderer intrazellulärer Regulationsproteinen (miRNA)



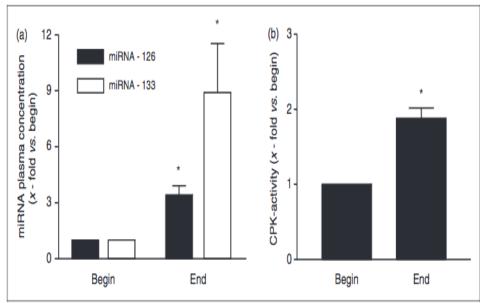
Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults

Madlen Uhlemann¹,*, Sven Möbius-Winkler¹,*, Sven Fikenzer², Jennifer Adam¹, Maren Redlich¹, Stefan Möhlenkamp³, Thomas Hilberg⁴, Gerhard C Schuler¹ and Volker Adams¹

European Journal of Preventive Cardiology 2014, Vol. 21(4) 484–491

Impact of singular resistance training with additional eccentric loads

Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults

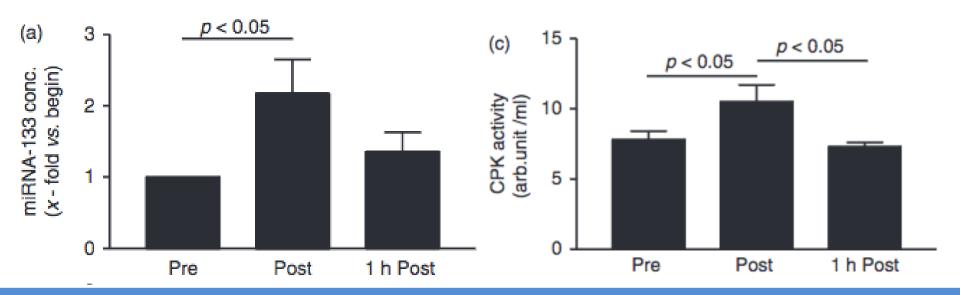

Madlen Uhlemann¹,*, Sven Möbius-Winkler¹,*, Sven Fikenzer², Jennifer Adam¹, Maren Redlich¹, Stefan Möhlenkamp³, Thomas Hilberg⁴, Gerhard C Schuler¹ and Volker Adams¹

European Journal of Preventive Cardiology 2014, Vol. 21(4) 484–491

Impact of singular 4-h cycling test at 70% of the individual anaerobic threshold.

The might activity of the might are concentration of might are concentratio

Impact of a marathon race.

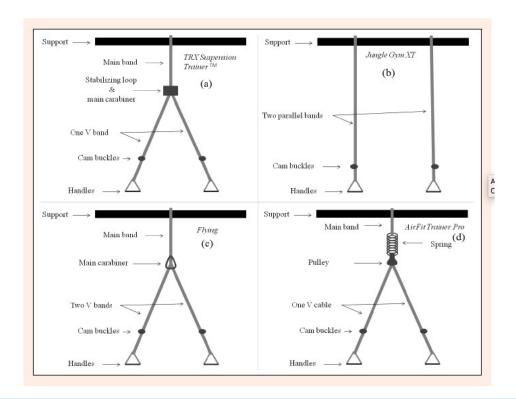


Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults

Madlen Uhlemann¹,*, Sven Möbius-Winkler¹,*, Sven Fikenzer², Jennifer Adam¹, Maren Redlich¹, Stefan Möhlenkamp³, Thomas Hilberg⁴, Gerhard C Schuler¹ and Volker Adams¹

European Journal of Preventive Cardiology 2014, Vol. 21(4) 484–491

Impact of singular resistance training with additional eccentric loads



Krafttraining

Schlingentraining (suspension training)

Schlingentraining ist nicht nur ein Krafttraining, sondern auch ein Training der Sensomotorik.

Die Spezifität des Schlingentrainings ergibt sich aus den instabilen Unterstützungsflächen.

Krafttraining

Schlingentraining (suspension training)

Möglichkeiten der Intensitätssteigerung:

Veränderung der Schlingenhöhe

Körperpositionierung zu den Schlingen

Variation der Unterstützungsfläche

Krafttraining

Schlingentraining (suspension training)

Belastungskomponenten für ein Schlingentraining

Belastungsintensität (in % RPE _{max})	90-100 %	
Wiederholungen	max. Wdh.	
Serien	3-4	
Serienpausen	60-90 Sek.	

RPE = "Rating of Perceived Exertion" (subjektive Beanspruchung)

MUSCLE ACTIVATION PATTERNS DURING SUSPENSION TRAINING EXERCISES

Ergebnis:

MANOVAs for all exercise comparisons showed statistically significant greater muscle activation in at least one muscle group during the ST condition.

Push-up:

PM (p = 0.002), RA (p<0.0001), OB (p = 0.019), MT (p<0.0001), and ES (p = 0.006);

Row:

MD (p = 0.016), RA (p = 0.059), and OB (p = 0.027);

Bridge: RA (p = 0.013) and ES (p<0.0001).

Plank: OB (p = 0.021);

Fazit

- → Athletiktraining verfolgt keine ästhetischen Ziele, sondern zielt auf eine Verbesserung der Leistungsfähigkeit ab!
- → Athletiktraining ist grundsätzlich zweckorientiert!
- → Athletiktraining zielt nicht auf das Stimulieren einzelner Muskeln, sondern auf das Trainieren komplexer Bewegungsabläufe ab!
- → Athletiktraining ist wirksam! (Progression der Belastung)

Schlussfolgerung:

→ Athletiktraining sollte das Fußballtraining planmäßig ergänzen!

offene Fragen?

Vielen Dank für die Aufmerksamkeit!